ORIE 5355: Applied Data Science -Decision-making beyond Prediction Lecture 3: Survey weighting methods Nikhil Garg

Announcements

- Homework 1 posted
- Please make sure you have access to EdStem and are receiving announcement notifications
- Office hours set: (all on course calendar) Location TBD
- Contact each other via the homework buddy form
- Wait lists should be clearing soon: contact Student Affairs (not me)

Mean estimation from surveys

The task: estimate mean opinion

- Each person *j* has an opinion, $Y_j \in \{0, 1\}$
- We want to measure $\overline{y} = E[Y_j]$, the population mean opinion on some issue
- Each person also has covariates, x_i^k
- We also may care about *conditional* means $E[Y_j | ORIE program]$

Example: "Do you like the class so far?"

Options: "yes" and "no"

 \bar{y} : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

This problem is everywhere

- What fraction will vote for the Democrat in the next election
- What is the average rating of this product?
- Do people want the city to build a foot bridge to Manhattan?
- Are people happy with this new feature I just deployed?

Naïve method: take the mean

- Get list of people (watched the movie; from phone book)
- Call them, suppose everyone answers and get Y_j from each
- We now have $\{Y_j\}_{j=1}^N$, if called N people Random sample of people in this class
- Simply do, $\hat{y} = \frac{1}{N} \sum_{j} Y_{j}$ Average opinion of the sample
- By law of large numbers, if Y_i is independent and identically distributed according to the true population's opinion, then

 $\hat{y} \to \bar{y} \text{ as } \mathbb{N} \to \infty$

 \overline{y} : Actual opinion of the class

What goes wrong

People don't give "true" opinion

Why?

- You're asking about something sensitive
- "social desirability" people like making other people happy
- They're getting paid to answer the survey and just want to finish
- You know they other person is also going to rate you

Of course, then you're (likely) not going to succeed

People gave you \widetilde{Y}_{i} , instead of Y_{i}

 $\hat{y} = \frac{1}{N} \sum_{j} \tilde{Y}_{j}$ You lie because you want a better grade

 \hat{y} does not converge to \overline{y} , unless errors cancel out

Your sample does not represent your population

- You just posted a poll on Facebook or Twitter, anyone could respond
- You called only landlines, and no one under 50 owns one anymore
- You only asked people to rate a movie after they've seen it
- You can only rate an item if you bought it and didn't return it
- Those with certain opinions are more likely not to answer
 - After bad experiences on online platforms
 - "Shy Trump voters" (?)

=> People who answer the poll are different than your population – "differential non-response"

Your sample does not represent your population, in math

- For each person j, let $A_j \in \{0,1\}$ be whether they answered
- You have $Y = \{(A_j, Y_j)\}_{j=1}^N$, if called N people Where $Y_j = \emptyset$ if $A_j = 0$ (they did not answer)
- Again, you do

 $\hat{y} = \frac{1}{|\{j \mid A_j = 1\}|} \sum_{j \in \{j \mid A_j = 1\}} Y_j$ where $\{j \mid A_j = 1\}$ denotes the set of people who answered and so $|\{j \mid A_j = 1\}|$ is the number of people who answered

 \hat{y} does not converge to \overline{y} unless Y_j and A_j are uncorrelated Uncorrelated: Whether you answered is unrelated to what your true opinion is

Case study: Polling in US 2016 presidential election

Where the polls were wrong – and right

Trump's margin in state polls taken during campaign's last three weeks vs. his margin in the election results

				RESTIMATE P MARGIN	Poll error			OVERESTIMATED TRUMP MARGIN			
			-30 -	20 -10	0	+10	+20	+30	+40	+50	+60
$01\mathbf{C}$	\frown	District of Columbia					AVE	RAGE			
n	$\boldsymbol{\mu}$	Hawaii			_		1.00				
		California			-	10000					
		Rhode Island				00	-				
		Illinois			-	0	···				
		Nevada			-	0000					
		Connecticut			-	ONDE					
		New Mexico			-						
		Massachusetts			-						
		Washington			-						
		Colorado			••••		_				
		New York				0000	0				
		New Jersey				000 000					
		Delaware				00 0					
		Texas				0.00					
4%		Arizona			-0						
		Georgia				0					
		Florida		00 0 0		000					
.2%		Virginia		00 00		0 0					
		Oregon									
		Maryland		(00)		000 0	_				
		Vermont		0.04	00	0 0					
		Louisiana		0 00			_				
		Michigan			-						
		Pennsylvania			-						
		Montana		0 000	000	Ð					
		New Hampshire		0.000	0						
		Wisconsin		(1000)	20 00						
		Mississippi									
		Alaska				0 0					
		North Carolina			-						
		Ohio			100						
on 46.8 %		Minnesota									
1D 45.0 %		lowa		00 0000		,					
		Indiana									
		Alabama		0 0000	,	- 00 0					
		Nebraska		00000							
		Maine	- 0	0 00 00							
		Kentucky					_				
		South Carolina									
		Missouri					_				
		Arkansas		(000)			_				
		Wyoming	0	000000							
		South Dakota		00 OB	80						
		Kansas	- 00 - 0	000		0					
		Utah				•					
		Oklahoma									
		North Dakota	- 0	0 100100							
ison 3.1 %		Idaho	0 0	0.0000							
		West Virginia	0								
		Tennessee		(0)(C000)							
					1						
		National		0000	•	0000					
					1						

Polls were off (a bit) in the 2016 e

FIVETHIRTYEIGHT

What happened?

- Professional pollsters spend a lot of time on getting opinions right [We'll cover some of their techniques next time]
- But, polling is an increasingly challenging business Basically no one answers a phone poll Modeling opinions/turnout in diverse democracy is hard "social desirability" → "shy Trump voters" (?)
- In 2016, turns out that less educated voters both: Were less likely to answer polls Were more likely to vote Trump

Response rate by year (%)

Note: Response rate is AAPOR RR3. Only landlines sampled 1997-2006. Rates are typical for surveys conducted in each year. Source: Pew Research Center telephone surveys conducted 1997-2018.

EW RESEARCH CENTER

Differential non-response is everything

- Differential non-response shows up everywhere you're gathering opinions
- Your training data for whatever model you train faces the same issue!
- Standard "margin of error" calculations do not take this into account
- Differential non-response *over time* often explains "swings" in polls!

Other pollsters complain about declining response rates, but our poll showed that 96% of respondents would be 'somewhat likely' or 'very likely' to agree to answer a series of questions for a survey.

Reminder: the task

- Each person *j* has an opinion, $Y_j \in \{0, 1\}$
- We want to measure $\overline{y} = E[Y_j]$, the population mean opinion on some issue
- Each person also has covariates, x_i^k
- We also may care about *conditional* means $E[Y_j | ORIE program]$

Example:

"Do you like the class so far?"

Options: "yes" and "no"

 \overline{y} : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

Challenge 1: people don't give "true" opinion

People gave you \widetilde{Y}_{j} , instead of Y_{j}

You lie because you want a better grade

$$\hat{y} = \frac{1}{N} \sum_{j} \widetilde{Y}_{j}$$

 \hat{y} does not converge to \overline{y} , unless errors cancel out

Challenge 2: Sample doesn't represent pop

- For each person j, let $A_j \in \{0,1\}$ be whether they answered
- You have $Y = \{(A_j, Y_j)\}_{j=1}^N$, if called N people Where $Y_j = \emptyset$ if $A_j = 0$ (they did not answer)

Some people don't answer when asked

• Again, you do

 $\hat{y} = \frac{1}{|\{j \mid A_j = 1\}|} \sum_{j \in \{j \mid A_j = 1\}} Y_j$ where $\{j \mid A_j = 1\}$ denotes the set of people who answered and so $|\{j \mid A_j = 1\}|$ is the number of people who answered

 \hat{y} does not converge to \overline{y} unless Y_i and A_i are uncorrelated

Plan for rest of the day

Methods for tackle sample representation issues

- Stratifying sample *before* you poll
- Weighting techniques *after* you have responses

Differential response on known covariates

- Suppose we have a single binary covariate $x_j \in \{0,1\}$ indicating whether they graduated to college Half the population went to college Whether MEng or MS degree
- Suppose whether people answer is correlated with education

 $Pr(A_j = 1) = \begin{cases} 0.1 \text{ if } x_j = 0 \\ 0.4 \text{ if } x_j = 1 \end{cases}$ Whether you answer is correlated with degree program

- Education also correlated with opinion Y_i in some unknown manner
- We want to measure $\overline{y} = E[Y_j]$, the population mean
- No other correlations between whether they answer and opinion: Opinion Y_j is independent of whether they respond A_j, conditional on x_j Given your degree program, whether you respond is uncorrelated with your opinion

New notation

- Number of people *called*:
- Population response rate for group ℓ :
- Population mean response for group ℓ :
- Population fraction for group ℓ :
- Corresponding *sample* values are:

(i.e., $N\hat{P}^{\ell}\hat{A}^{\ell} = |\{j \mid A_i = 1, x_i \text{ in Group } \ell\}|$)

and so:

$$\bar{y} = \frac{P^0 \bar{y}^0 + P^1 \bar{y}^1}{P^0 + P^1} = P^0 \bar{y}^0 + P^1 \bar{y}^1 = 0.5 \ \bar{y}^0 + 0.5 \ \bar{y}^1 \qquad \text{in example} \qquad \text{True mean} \\ \text{opinion}$$

$$\hat{y}_{naive} = \frac{\hat{A}^0 \hat{P}^0 \hat{y}^0 + \hat{A}^1 \hat{P}^1 \hat{y}^1}{\hat{A}^0 \hat{P}^0 + \hat{A}^1 \hat{P}^1} \rightarrow \frac{A^0 P^0 \bar{y}^0 + A^1 P^1 \bar{y}^1}{A^0 P^0 + A^1 P^1} = 0.2 \ \bar{y}^0 + 0.8 \ \bar{y}^1 \qquad \text{Mean polynomial}$$

of people in class A^{ℓ} Response fraction in degree ℓ "Likes class" fraction in degree ℓ P^{ℓ} Fraction of class in degree ℓ $\hat{A}^{\ell}, \hat{y}^{\ell}, \hat{P}^{\ell}$

Ν

 \bar{y}^{ℓ}

who answered in degree ℓ

Naïve method in more detail

$$\hat{y}_{naive} = \frac{\left(\sum_{j \in \{j \mid A_j = 1, x = 0\}} Y_j + \sum_{j \in \{j \mid A_j = 1, x = 1\}} Y_j\right)}{|\{j \mid A_j = 1, x = 0\}| + |\{j \mid A_j = 1, x = 1\}|}$$
$$= \frac{\hat{A}^0 \hat{p}^0 \hat{y}^0 + \hat{A}^1 \hat{p}^1 \hat{y}^1}{\hat{A}^0 \hat{p}^0 + \hat{A}^1 \hat{p}^1} = \frac{(\#(Y_j = 1) \text{ from Group } 0 + \#(Y_j = 1) \text{ from Group } 1)}{\text{Total Respondents}}$$
$$\to \frac{P^0 A^0 \bar{y}^0 + P^1 A^1 \bar{y}^1}{P^0 A^0 + P^1 A^1} \neq \bar{y} \text{ unless } A^0 = A^1$$

 $P^{0}A^{0}/(P^{0}A^{0}+P^{1}A^{1})$ is limit fraction of respondents from Group 0 Bias (even with $N \rightarrow \infty$): Limit fraction does not match the population fraction Variance (with finite N): Sample values do not match limit values

Stratified sampling

Stratification: change who you call

- Suppose you have *L* mutually exclusive demographic groups: A population that is heterogeneous *across* groups Relatively homogenous *within* groups (Exactly the setup we have)
 Y_j is independent of *A_j*,
 conditional on x_j
- Then, instead of calling N completely random people Call N^ℓ people from group ℓ
 Where N^ℓ is determined by how likely each group is to respond
 If MEng students are less likely to respond, call more of them
- Even if each group responds at same frequency, this leads to *lower* variance estimates
- With differential response rates, can also correct the *bias* in *mean*

Why does it work?

- With differential response rate: we can "cancel out" the differential response rate by just calling more people from that group
- Even without differential response rates, just differential opinion: There are two sources of variance in estimation: Which groups are over- and under- sampled due to noise What the opinion of each person is Stratification mitigates the first source of variance

Why does it work? (Mathematically)

$$\hat{y} = \frac{\left(\sum_{j \in \{j \mid A_j = 1, x = 0\}} Y_j + \sum_{j \in \{j \mid A_j = 1, x = 1\}} Y_j\right)}{\left|\{j \mid A_j = 1, x = 0\}\right| + \left|\{j \mid A_j = 1, x = 1\}\right|}$$
Now
$$N^{\ell} \hat{A}^{\ell} \text{ instead of} = \frac{(\#1 \text{ from group } 0 + \#1 \text{ from group } 1)}{\text{Total Respondents}}$$

$$\rightarrow \frac{N^0 A^0 \bar{y}^0 + N^1 A^1 \bar{y}^1}{N^0 A^0 + N^1 A^1} = \bar{y} \text{ if } \frac{N^0 A^0}{P^0} = \frac{N^1 A^1}{P^1} \qquad \begin{array}{c} \text{Calling more in ratio of non-response} \end{array}$$

With stratification, cancel out the bias *because* you simply asked more people from the group with lower response rate

It also reduces variance, even if $A^0 = A^1$ (and $N^0 = N^1$)

Stratification in practice

- You often don't know group specific response rates A^{ℓ}
 - Define groups and then keep sampling until you have enough samples
 - Weighting after sampling (covered next)
- How many groups/what groups do you choose?
 - Our example had a binary covariate we called "education"
 - What about stratifying ethnicity, or intersectional groups (ethnicity x gender)?
 - Why stop there? Why not ethnicity x gender x education x age ...?
 - As number of groups increase, number of people in each group goes down
- Remember the rule: create groups such that the response rates is not correlated with whether they answer, within each group

Response Y_j is independent of whether they respond A_j , within each group x_j

Questions?

Weighting

Main idea for weighting

- In stratified sampling, we balanced out the groups according to their population percentage *before* we called people
- With weighting, we try to do the same thing, but *after* we call people and know how many from each group responded
- Why?
 - You might not know response rates per group
 - You might not know a person's demographics until you call them
 - Can run sensitivity analyses: "what would the estimate be if this demographic group only composes x% of the population instead of y%?"
- Comes at a cost: doesn't have the same variance reduction properties as does stratified sampling

Main idea, 2 steps:

Step 1: Use the responses to estimate the mean response for each group ℓ , i.e., get an estimate \hat{y}^{ℓ} of the true opinion \bar{y}^{ℓ}

Step 2: Do a weighted average of \hat{y}^{ℓ} ; each group is given weight W^{ℓ} $\hat{y} = \sum_{\ell} W^{\ell} \hat{y}^{\ell}$

If $W^{\ell} = P^{\ell}$ and $\hat{y}^{\ell} \to \overline{y}^{\ell}$, then $\hat{y} \to \overline{y}$

Details differ in how to construct estimate \hat{y}^{ℓ} , how to calculate weight W^{ℓ} , and what groups ℓ to consider

Naïve Weighting

Step 1: Use the mean response for each group ℓ separately, i.e. $\hat{y}^{\ell} = \frac{\sum_{j \in \{j \mid A_j = 1, x = \ell\}} Y_j}{|\{j \mid A_j = 1, x = \ell\}|}$

Step 2: Weight W^{ℓ} is our best guess of true population fraction P^{ℓ} for group ℓ

Complication: How many groups/which ones?

- If group too broad (e.g., group ℓ just gender), then break cardinal rule: Need: Opinion Y_i is independent of whether they respond A_i , conditional on group ℓ
- If group is too specific (*ethnicity* x *gender* x *education* x *age*), then: Problem 1: Estimate $\hat{y}^{\ell} = \frac{\sum_{j \in \{j \mid A_j = 1, x = \ell\}} Y_j}{|\{j \mid A_j = 1, x = \ell\}|}$ might be really bad Too few respondents in a group \rightarrow high variance (1 person might determine entire average)

Problem 2: We might not know population fraction P^{ℓ}

Tackling Problem 2: Population weights

- Suppose very specific group (*ethnicity* x *gender* x *education* x *age*)
- Naïve: try to figure out true population fraction ("joint distribution") $"W^{\ell} = P^{\ell} \text{ fraction of pop is college educated white women age 35-44"}$
- Easier: Use "marginal" distribution for each covariate
 - "a fraction of population is women"
 - "b fraction of population is college educated"
 - "c fraction of population is white"
 - "d fraction of population is age 35-44"

 \Rightarrow Pretend " W^{ℓ} = abcd fraction of pop is college educated white women age 35-44"

• Not covered -- "raking": match marginal distribution for each covariate without assuming that marginal distributions make up joint distribution

The homework

• In the homework, first we define groups just based on a single covariate, for example gender, ethnicity/race, political party, etc.

• (e.g., group ℓ just based on gender); we give you P^{ℓ}

- Then we define groups based on 2 covariates; we give you P^{ℓ}
- Then we define groups based on 2 covariates and ask you to construct P^{ℓ} based on marginal distributions

Tackling Problem 1: MRP

Problem 1: Estimate $\hat{y}^{\ell} = \frac{\sum_{j \in \{j \mid A_j = 1, x = \ell\}} Y_j}{|\{j \mid A_j = 1, x = \ell\}|}$ might be really bad

Too few respondents in a group \rightarrow high variance (1 person might determine entire average)

- Somehow this seems wrong: presumably, the estimate for a group should be very close to that of a "neighboring" group
- "Multi-level regression with post-stratification" (MRP)
 Main idea: Train a (Bayesian) regression model to get estimate ŷ^ℓ for each set of covariates. Then, "post-stratify" by weighting ŷ^ℓ by population fraction P^ℓ
 For groups with many samples, estimate ŷ^ℓ just based on that group; otherwise, based on "neighboring" groups

Parting thoughts on weighting

- Where do the population percentages come from? In political polling, you need to define a universe of "likely voters"
- Methods not covered here: Inverse Propensity Scoring, and Matching
- Note, can only weight when you observe the covariates for each respondent!
- What if sampling bias is correlated with a feature you don't observe? Next time!

Parting thoughts

Be purposeful! Does your numeric data capture what you want it to?

Be skeptical! Just because a poll was "random" doesn't make it good

Unmeasured confounding and quantifying uncertainty

[Extra content, not covered in class]

The challenge

• In the last lecture, weighting helped us deal with *measured* selection bias/differential non-response

Response rates and political opinions both correlate with educational status;

- (1) Education status can be asked for during the poll
- (2) We can roughly guess at voter distribution by education status
- (3) Then use various *weighting* techniques
- What if response rates & opinions depend on a covariate that we don't observe, or that we don't know the population distribution of?
- Very little we can do to recover "point-estimate" of population opinion
- However, we can *quantify the uncertainty* under *assumptions* on how bad the problem is

Setup

- Suppose there is a (binary) covariate u_j that correlates with both the opinion of interest Y_j and whether people respond A_j .
- You don't observe u_i for any individual j
- u is the only unmeasured confounding: A_j is uncorrelated with true opinion Y_j given u_j -- but we don't have u_j
- You have an estimate \hat{y} (raw average of responses)
- Idea: Make assumptions on "how bad" the unmeasured confounding can get to derive uncertainty regions for your estimate of interest.

How to quantify uncertainty

- If we assume like we did on the last slide: "Conditional on what group the respondent belongs to, their opinion does not correlate with whether they respond"
- Then, you can do some math where your error decomposes into the difference between groups in *whether they respond* and *true opinion differences*

 $\hat{y} - \bar{y} \rightarrow \left(\tilde{P}^1 - P^1\right) \left(E\left[Y_j \mid u_j = 1\right] - E\left[Y_j \mid u_j = 0\right] \right)$

More detail: Notation and Insight

- True population fractions of $u: P^1 = Pr(u_j = 1), 1 P^1 = Pr(u_j = 0)$
- Response fractions: $\tilde{P}^{\ell} = Pr(u_j = \ell | A_j = 1)$
- $\bar{y} \stackrel{\text{def}}{=} E[Y_j] = P^1 E[Y_j \mid u_j = 1] + (1 P^1) E[Y_j \mid u_j = 0]$
- $\hat{y} \to E[Y_j \mid A_j = 1] = \tilde{P}^1 E[Y_j \mid u_j = 1, A_j = 1] + (1 \tilde{P}^1) E[Y_j \mid u_j = 0, A_j = 1]$
- Insight:

$$E[Y_j | u_j = \ell, A_j = 1] = E[Y_j | u_j = \ell]$$

"Conditional on what group the respondent belongs to, their opinion does not correlate with whether they respond" \leftarrow We assumed this on last slide!

More detail: Quantifying uncertainty in math

$$\overline{y} = P^{1}E[Y_{j} \mid u_{j} = 1] + (1 - P^{1})E[Y_{j} \mid u_{j} = 0] \widehat{y} \to \widetilde{P}^{1}E[Y_{j} \mid u_{j} = 1] + (1 - \widetilde{P}^{1})E[Y_{j} \mid u_{j} = 0]$$

Rearrange:

$$\hat{y} \to \bar{y} + (\tilde{P}^1 - P^1) E[Y_j \mid u_j = 1] + (P^1 - \tilde{P}^1) E[Y_j \mid u_j = 0] = \bar{y} + (\tilde{P}^1 - P^1) (E[Y_j \mid u_j = 1] - E[Y_j \mid u_j = 0])$$

Then, make assumptions on whether respond and opinion differences to quantify how far \hat{y} can be from \overline{y}

If *either* response fractions or opinions between groups are similar, effect of unmeasured confounding is small!

Unmeasured confounding in ML

• In data science, we often care about *causal inference* (later in semester)

"What is the causal effect of going to a private high school on college success?" Problem: In the US, private HS attendance correlated with parents' wealth

- Unmeasured confounding (you might not know parents' wealth) would mess up your *inference* of the relationship in a regression
- You can also quantify unmeasured confounding and range of effects in such cases

Questions?