ORIE 5355: Applied Data Science -Decision-making beyond Prediction Lecture 3: Survey weighting methods

Nikhil Garg

Announcements

- Homework 1 posted
- Please make sure you have access to EdStem and are receiving announcement notifications
- Office hours set: (all on course calendar) Location TBD
- Contact each other via the homework buddy form
- Wait lists should be clearing soon: contact Student Affairs (not me)

Mean estimation from surveys

The task: estimate mean opinion

 Example:"Do you like the class so far?"

- Each person j has an opinion, $Y_{j} \in\{0,1\}$
- We want to measure $\bar{y}=E\left[Y_{j}\right]$, the population mean opinion on some issue
- Each person also has covariates, x_{j}^{k}
- We also may care about conditional means

$$
E\left[Y_{j} \text { |ORIE program }\right]
$$

Options: "yes" and "no"
\bar{y} : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

This problem is everywhere

- What fraction will vote for the Democrat in the next election
-What is the average rating of this product?
- Do people want the city to build a foot bridge to Manhattan?
- Are people happy with this new feature I just deployed?

Naïve method: take the mean

- Get list of people (watched the movie; from phone book)
- Call them, suppose everyone answers and get Y_{j} from each
- We now have $\left\{Y_{j}\right\}_{j=1}^{N}$, if called N people

Random sample of people in this class

- Simply do, $\hat{y}=\frac{1}{N} \sum_{j} Y_{j}$
- By law of large numbers, if Y_{i} is independent and identically distributed according to the true population's opinion, then

$$
\begin{aligned}
\hat{y} \rightarrow & \bar{y} \text { as } \mathrm{N} \rightarrow \infty \\
& \bar{y}: \text { Actual opinion of the class }
\end{aligned}
$$

What goes wrong

People don’t give "true" opinion

Why?

- You're asking about something sensitive
- "social desirability" - people like making other people happy
- They're getting paid to answer the survey and just want to finish
- You know they other person is also going to rate you

Of course, then you're (likely) not going to succeed
People gave you \widetilde{Y}_{j}, instead of Y_{j}

$$
\widehat{y}=\frac{1}{N} \sum_{j} \widetilde{Y}_{j} \quad \text { You lie because you want a better grade }
$$

\hat{y} does not converge to \bar{y}, unless errors cancel out

Your sample does not represent your population

- You just posted a poll on Facebook or Twitter, anyone could respond
- You called only landlines, and no one under 50 owns one anymore
- You only asked people to rate a movie after they've seen it
- You can only rate an item if you bought it and didn't return it
- Those with certain opinions are more likely not to answer
- After bad experiences on online platforms
- "Shy Trump voters" (?)
=> People who answer the poll are different than your population - "differential non-response"

Your sample does not represent your population, in math

- For each person j, let $A_{j} \in\{0,1\}$ be whether they answered
- You have $Y=\left\{\left(A_{j}, Y_{j}\right)\right\}_{j=1}^{N}$, if called N people

$$
\text { Where } Y_{j}=\varnothing \text { if } A_{j}=0 \text { (they did not answer) }
$$

- Again, you do

$$
\hat{y}=\frac{1}{\left|\left\{j \mid A_{j}=1\right\}\right|} \sum_{j \in\left\{j \mid A_{j}=1\right\}} Y_{j}
$$

where $\left\{j \mid A_{j}=1\right\}$ denotes the set of people who answered and so $\left|\left\{j \mid A_{j}=1\right\}\right|$ is the number of people who answered
\hat{y} does not converge to \bar{y} unless Y_{j} and A_{j} are uncorrelated

Case study: Polling in US 2016 presidential election

Where the polls were wrong - and right
Trump's margin in state polls taken during campaign's las three weeks vs, his margin in the election results

Polls were off (a bit) in the 2016 e

EThe Nicw गlork Ẽimes
Presidential Forecast

Hillary Clinton has a 91% chance to win \rightarrow

- UnDERESTIMATED

Poll error $\begin{gathered}\text { OVERESTIMATED } \\ \text { TRUMP MARGIN }\end{gathered}$

What happened?

- Professional pollsters spend a lot of time on getting opinions right
[We'll cover some of their techniques next time]
- But, polling is an increasingly challenging business

Basically no one answers a phone poll
Modeling opinions/turnout in diverse democracy is hard "social desirability" \rightarrow "shy Trump voters" (?)

- In 2016, turns out that less educated voters both:

Were less likely to answer polls
Were more likely to vote Trump

After brief plateau, telephone survey response rates have fallen again
Response rate by year (\%)

Differential non-response is everything

- Differential non-response shows up everywhere you're gathering opinions
- Your training data for whatever model you train faces the same issue!
- Standard "margin of error" calculations do not take this into account
- Differential non-response over time often explains "swings" in polls!

POLLS ARE
JUST NUMBERS.
YOU HAVE' TO TALK TO PEOPLE ON THE STREET.

POLLS SAY MOST
PEOPLE SUPPORT <CANDIDATE X).
BUT THE PEOPLE I TALK TO ON THE STREET SUPPORT <CANDIDATE Y >.

POLLS CLAIM MOST PEOPLE DON'T LIVE IN MY TOWN AND HAVE NEVER BEEN HERE. BUT THE PEOPLE I MEET ON THE STREET TELL A VERY DFFFRENT STORY.

ACCORDING TO POLLS, MOST PEOPLE DON'T LIKE PLAYING IN TRAFFIC. SO WHY DO I NEVER SEEM TO MEET THESE PEOPLE ON THE STREET?

Other pollsters complain about declining response rates, but our poll showed that 96% of respondents would be 'somewhat likely' or 'very likely' to agree to answer a series of questions for a survey.

Reminder: the task

Example:

"Do you like the class so far?"

- Each person j has an opinion, $Y_{j} \in\{0,1\}$

Options: "yes" and "no"

- We want to measure $\bar{y}=E\left[Y_{j}\right]$, the population mean opinion on some issue
- Each person also has covariates, x_{j}^{k}
- We also may care about conditional means $E\left[Y_{j} \mid\right.$ ORIE program $]$
\bar{y} : What fraction of people like the class so far?

Degree program, whether you like waking up at 9:30, etc

Fraction of people in ORIE who like the class

Challenge 1: people don't give "true" opinion

People gave you \widetilde{Y}_{j}, instead of Y_{j}
You lie because
you want a better grade

$$
\hat{y}=\frac{1}{N} \sum_{j} \widetilde{Y}_{j}
$$

\hat{y} does not converge to \bar{y}, unless errors cancel out

Challenge 2: Sample doesn't represent pop

- For each person j, let $A_{j} \in\{0,1\}$ be whether they answered Some people
- You have $Y=\left\{\left(A_{j}, Y_{j}\right)\right\}_{j=1}^{N}$, if called N people

Where $Y_{j}=\emptyset$ if $A_{j}=0$ (they did not answer)

- Again, you do

$$
\begin{aligned}
& \hat{y}=\frac{1}{\left|\left\{j \mid A_{j}=1\right\}\right|} \sum_{j \in\left\{j \mid A_{j}=1\right\}} Y_{j} \\
& \text { where }\left\{j \mid A_{j}=1\right\} \text { denotes the set of people who answered } \\
& \text { and so }\left|\left\{j \mid A_{j}=1\right\}\right| \text { is the number of people who answered }
\end{aligned}
$$

\hat{y} does not converge to \bar{y} unless Y_{j} and A_{j} are uncorrelated

Plan for rest of the day
Methods for tackle sample representation issues

- Stratifying sample before you poll
- Weighting techniques after you have responses

Differential response on known covariates

- Suppose we have a single binary covariate $x_{j} \in\{0,1\}$ indicating whether they graduated to college
Half the population went to college

Whether MEng or MS degree

- Suppose whether people answer is correlated with education

$$
\operatorname{Pr}\left(A_{j}=1\right)=\left\{\begin{array}{l}
0.1 \text { if } x_{j}=0 \\
0.4 \text { if } x_{j}=1
\end{array}\right.
$$

Whether you answer is correlated with
degree program

- Education also correlated with opinion Y_{j} in some unknown manner
- We want to measure $\bar{y}=E\left[Y_{j}\right]$, the population mean
- No other correlations between whether they answer and opinion:

Opinion Y_{j} is independent of whether they respond A_{j}, conditional on x_{j}
Given your degree program, whether you respond is uncorrelated with your opinion

New notation

- Number of people called:
- Population response rate for group ℓ :
- Population mean response for group l :
- Population fraction for group ℓ :

N \# of people in class
$A^{\ell} \quad$ Response fraction in degree ℓ
$\bar{y}^{\ell} \quad$ "Likes class" fraction in degree ℓ P^{ℓ} Fraction of class in degree ℓ

- Corresponding sample values are:

$$
\text { (i.e., } \left.\mathrm{N} \hat{P}^{\ell} \hat{A}^{\ell}=\mid\left\{j \mid A_{j}=1, x_{j} \text { in Group } \ell\right\} \mid\right)
$$

and so:

$$
\bar{y}=\frac{P^{0} \bar{y}^{0}+P^{1} \bar{y}^{1}}{P^{0}+P^{1}}=P^{0} \bar{y}^{0}+P^{1} \bar{y}^{1}=0.5 \bar{y}^{0}+0.5 \bar{y}^{1} \quad \text { in example } \quad \text { True mean } \quad \text { opinion }
$$

$$
\hat{y}_{\text {naive }}=\frac{\hat{A}^{0} \hat{P}^{0} \hat{y}^{0}+\hat{A}^{1} \hat{P}^{1} \hat{y}^{1}}{\hat{A}^{0} \hat{P}^{0}+\hat{A}^{1} \hat{P}^{1}} \rightarrow \frac{A^{0} P^{0} \bar{y}^{0}+A^{1} P^{1} \bar{y}^{1}}{A^{0} P^{0}+A^{1} P^{1}}=0.2 \bar{y}^{0}+0.8 \bar{y}^{1}
$$

Naïve method in more detail

$$
\begin{aligned}
& \hat{y}_{\text {naive }}=\frac{\left(\sum_{j \in\left\{j \mid A_{j}=1, x=0\right\}} Y_{j}+\sum_{j \in\left\{j \mid A_{j}=1, x=1\right\}} Y_{j}\right)}{\left|\left\{j \mid A_{j}=1, x=0\right\}\right|+\left|\left\{j \mid A_{j}=1, x=1\right\}\right|} \\
& =\frac{\hat{A}^{0} \hat{P}^{0} \hat{y}^{0}+\widehat{A}^{1} \hat{P}^{1} \hat{y}^{1}}{\widehat{A}^{0} \hat{P}^{0}+\widehat{A}^{1} \widehat{P}^{1}}=\frac{\left(\#\left(Y_{j}=1\right) \text { from Group } 0+\#\left(Y_{j}=1\right)\right. \text { from Group 1) }}{\text { Total Respondants }} \\
& \rightarrow \frac{P^{0} A^{0} \bar{y}^{0}+P^{1} A^{1} \bar{y}^{1}}{P^{0} \mathrm{~A}^{0}+P^{1} A^{1}} \neq \bar{y} \text { unless } \mathrm{A}^{0}=A^{1}
\end{aligned}
$$

$P^{0} A^{0} /\left(P^{0} \mathrm{~A}^{0}+P^{1} A^{1}\right)$ is limit fraction of respondents from Group 0
Bias (even with $N \rightarrow \infty$): Limit fraction does not match the population fraction Variance (with finite N): Sample values do not match limit values

Stratified sampling

Stratification: change who you call

- Suppose you have L mutually exclusive demographic groups:

A population that is heterogeneous across groups
Relatively homogenous within groups (Exactly the setup we have)
Y_{j} is independent of A_{j}, conditional on x_{j}

- Then, instead of calling N completely random people Call N^{ℓ} people from group ℓ
Where N^{ℓ} is determined by how likely each group is to respond
If MEng students are less likely to respond, call more of them
- Even if each group responds at same frequency, this leads to lower variance estimates
- With differential response rates, can also correct the bias in mean

Why does it work?

- With differential response rate: we can "cancel out" the differential response rate by just calling more people from that group
- Even without differential response rates, just differential opinion:

There are two sources of variance in estimation:
Which groups are over- and under- sampled due to noise
What the opinion of each person is
Stratification mitigates the first source of variance

Why does it work? (Mathematically)

With stratification, cancel out the bias because you simply asked more people from the group with lower response rate
It also reduces variance, even if $\mathrm{A}^{0}=A^{1}$ (and $\mathrm{N}^{0}=N^{1}$)

Stratification in practice

- You often don't know group specific response rates A^{l}
- Define groups and then keep sampling until you have enough samples
- Weighting after sampling (covered next)
- How many groups/what groups do you choose?
- Our example had a binary covariate we called "education"
- What about stratifying ethnicity, or intersectional groups (ethnicity x gender)?
- Why stop there? Why not ethnicity x gender x education x age ...?
- As number of groups increase, number of people in each group goes down
- Remember the rule: create groups such that the response rates is not correlated with whether they answer, within each group

Response Y_{j} is independent of whether they respond A_{j}, within each group x_{j}

Questions?

Weighting

Main idea for weighting

- In stratified sampling, we balanced out the groups according to their population percentage before we called people
- With weighting, we try to do the same thing, but after we call people and know how many from each group responded
- Why?
- You might not know response rates per group
- You might not know a person's demographics until you call them
- Can run sensitivity analyses: "what would the estimate be if this demographic group only composes $x \%$ of the population instead of $y \%$?"
- Comes at a cost: doesn't have the same variance reduction properties as does stratified sampling

Main idea, 2 steps:

Step 1: Use the responses to estimate the mean response for each group ℓ, i.e., get an estimate \hat{y}^{ℓ} of the true opinion \bar{y}^{ℓ}

Step 2: Do a weighted average of \hat{y}^{ℓ}; each group is given weight W^{ℓ}

$$
\hat{y}=\sum_{\ell} W^{\ell} \hat{y}^{\ell}
$$

If $W^{\ell}=P^{\ell}$ and $\hat{y}^{\ell} \rightarrow \bar{y}^{\ell}$, then $\hat{y} \rightarrow \bar{y}$
Details differ in how to construct estimate \hat{y}^{ℓ}, how to calculate weight W^{ℓ}, and what groups ℓ to consider

Naïve Weighting

Step 1: Use the mean response for each group ℓ separately, i.e.

$$
\hat{y}^{\ell}=\frac{\sum_{j \in\left\{j \mid A_{j}=1, x=\ell\right\}} Y_{j}}{\left|\left\{j \mid A_{j}=1, x=\ell\right\}\right|}
$$

Step 2: Weight W^{ℓ} is our best guess of true population fraction P^{ℓ} for group l

Complication: How many groups/which ones?

- If group too broad (e.g., group ℓ just gender), then break cardinal rule:

Need: Opinion Y_{j} is independent of whether they respond A_{j}, conditional on group ℓ

- If group is too specific (ethnicity x gender x education x age), then:

Problem 1: Estimate $\hat{y}^{\ell}=\frac{\sum_{j \in\left\{j \mid A_{j}=1, x=\ell\right\}} Y_{j}}{\left|\left\{j \mid A_{j}=1, x=\ell\right\}\right|}$ might be really bad
Too few respondents in a group \rightarrow high variance (1 person might determine entire average)
Problem 2: We might not know population fraction P^{ℓ}

Tackling Problem 2: Population weights

- Suppose very specific group (ethnicity x gender x education xage)
- Naïve: try to figure out true population fraction ("joint distribution")
" $W^{\ell}=P^{\ell}$ fraction of pop is college educated white women age 35-44"
- Easier: Use "marginal" distribution for each covariate
"a fraction of population is women"
"b fraction of population is college educated"
"c fraction of population is white"
"d fraction of population is age 35-44"
\Rightarrow Pretend " $W^{\ell}=$ abcd fraction of pop is college educated white women age 35-44"
- Not covered -- "raking": match marginal distribution for each covariate without assuming that marginal distributions make up joint distribution

The homework

- In the homework, first we define groups just based on a single covariate, for example gender, ethnicity/race, political party, etc.
- (e.g., group ℓ just based on gender); we give you P^{ℓ}
- Then we define groups based on 2 covariates; we give you P^{ℓ}
- Then we define groups based on 2 covariates and ask you to construct P^{ℓ} based on marginal distributions

Tackling Problem 1: MRP

Problem 1: Estimate $\hat{y}^{\ell}=\frac{\sum_{j \in\left\{j \mid A_{j}=1, x=\ell\right\}} Y_{j}}{\left|\left\{j \mid A_{j}=1, x=\ell\right\}\right|}$ might be really bad
Too few respondents in a group \rightarrow high variance (1 person might determine entire average)

- Somehow this seems wrong: presumably, the estimate for a group should be very close to that of a "neighboring" group
- "Multi-level regression with post-stratification" (MRP)

Main idea: Train a (Bayesian) regression model to get estimate \hat{y}^{ℓ} for each set of covariates. Then, "post-stratify" by weighting \hat{y}^{ℓ} by population fraction P^{ℓ} For groups with many samples, estimate \hat{y}^{ℓ} just based on that group; otherwise, based on "neighboring" groups

Parting thoughts on weighting

- Where do the population percentages come from? In political polling, you need to define a universe of "likely voters"
- Methods not covered here: Inverse Propensity Scoring, and Matching
- Note, can only weight when you observe the covariates for each respondent!
- What if sampling bias is correlated with a feature you don't observe?

Next time!

Parting thoughts

Be purposeful! Does your numeric data capture what you want it to?
Be skeptical! Just because a poll was "random" doesn't make it good

Unmeasured confounding and quantifying uncertainty

[Extra content, not covered in class]

The challenge

- In the last lecture, weighting helped us deal with measured selection bias/differential non-response
Response rates and political opinions both correlate with educational status;
(1) Education status can be asked for during the poll
(2) We can roughly guess at voter distribution by education status
(3) Then use various weighting techniques
- What if response rates \& opinions depend on a covariate that we don't observe, or that we don't know the population distribution of?
- Very little we can do to recover "point-estimate" of population opinion
- However, we can quantify the uncertainty under assumptions on how bad the problem is

Setup

- Suppose there is a (binary) covariate u_{j} that correlates with both the opinion of interest Y_{j} and whether people respond A_{j}.
- You don't observe u_{j} for any individual j
- u is the only unmeasured confounding: A_{j} is uncorrelated with true opinion Y_{j} given u_{j}-- but we don't have u_{j}
- You have an estimate \hat{y} (raw average of responses)
- Idea: Make assumptions on "how bad" the unmeasured confounding can get to derive uncertainty regions for your estimate of interest.

How to quantify uncertainty

- If we assume like we did on the last slide: "Conditional on what group the respondent belongs to, their opinion does not correlate with whether they respond"
- Then, you can do some math where your error decomposes into the difference between groups in whether they respond and true opinion differences

$$
\hat{y}-\bar{y} \rightarrow\left(\tilde{P}^{1}-P^{1}\right)\left(E\left[Y_{j} \mid u_{j}=1\right]-E\left[Y_{j} \mid u_{j}=0\right]\right)
$$

More detail: Notation and Insight

- True population fractions of $u: \mathrm{P}^{1}=\operatorname{Pr}\left(u_{j}=1\right), 1-\mathrm{P}^{1}=\operatorname{Pr}\left(u_{j}=0\right)$
- Response fractions: $\tilde{\mathrm{P}}^{\ell}=\operatorname{Pr}\left(u_{j}=\ell \mid A_{j}=1\right)$
- $\bar{y} \xlongequal{\text { def }} E\left[Y_{j}\right]=P^{1} E\left[Y_{j} \mid u_{j}=1\right]+\left(1-P^{1}\right) E\left[Y_{j} \mid u_{j}=0\right]$
- $\hat{y} \rightarrow E\left[Y_{j} \mid A_{j}=1\right]=\tilde{\mathrm{P}}^{1} E\left[Y_{j} \mid u_{j}=1, A_{j}=1\right]$

$$
+\left(1-\tilde{P}^{1}\right) E\left[Y_{j} \mid u_{j}=0, A_{j}=1\right]
$$

- Insight:

$$
E\left[Y_{j} \mid u_{j}=\ell, A_{j}=1\right]=E\left[Y_{j} \mid u_{j}=\ell\right]
$$

"Conditional on what group the respondent belongs to, their opinion does not correlate with whether they respond" \leftarrow We assumed this on last slide!

More detail: Quantifying uncertainty in math

$$
\begin{aligned}
& \bar{y}=P^{1} E\left[Y_{j} \mid u_{j}=1\right]+\left(1-P^{1}\right) E\left[Y_{j} \mid u_{j}=0\right] \\
& \hat{y} \rightarrow \tilde{P}^{1} E\left[Y_{j} \mid u_{j}=1\right]+\left(1-\tilde{P}^{1}\right) E\left[Y_{j} \mid u_{j}=0\right]
\end{aligned}
$$

Rearrange:

$$
\begin{aligned}
& \hat{y} \rightarrow \bar{y}+\left(\tilde{P}^{1}-P^{1}\right) E\left[Y_{j} \mid u_{j}=1\right]+\left(P^{1}-\tilde{P}^{1}\right) E\left[Y_{j} \mid u_{j}=0\right] \\
& \quad=\bar{y}+\left(\tilde{P}^{1}-P^{1}\right)\left(E\left[Y_{j} \mid u_{j}=1\right]-E\left[Y_{j} \mid u_{j}=0\right]\right)
\end{aligned}
$$

Then, make assumptions on whether respond and opinion differences to quantify how far \hat{y} can be from \bar{y}
If either response fractions or opinions between groups are similar, effect of unmeasured confounding is small!

Unmeasured confounding in ML

- In data science, we often care about causal inference (later in semester)
"What is the causal effect of going to a private high school on college success?"
Problem: In the US, private HS attendance correlated with parents' wealth
- Unmeasured confounding (you might not know parents' wealth) would mess up your inference of the relationship in a regression
- You can also quantify unmeasured confounding and range of effects in such cases

Questions?

